Scalable Distributed Inverted List Indexes
In Disaggregated Memory

MANUEL WIDMOSER
DANIEL KOCHER
NIKOLAUS AUGSTEN

University of Salzburg, Austria
June 13th, 2024

PODS
2024

Santiago
T Chile
IGMOD

Inverted List Index

A term maps to an ordered list of documents that contain this term

o\ 8 Return all documents with common guery terms

torm, Y ducks B
!
2
4

}
4 15
15 42
19 19
document IDr/
42
L / -
ducks

APPLICATIONS

e [nformation retrieval * DB query processing
e Graph analytics e Similarity search

Inverted List Index

A term maps to an ordered list of documents that contain this term

o\ 8 Return all documents with common guery terms

d0C42 l l
* INSERT: Ducks symbolize

| travel. Many 2

- For each term in document D: species of ducks 4 4 15
. . migrate up to

Append D.id to list Lgrm 800 miles. 15 42

fj 19 19

document ID
Ldycks

APPLICATIONS

e [nformation retrieval * DB query processing
e Graph analytics e Similarity search

http://D.id

Inverted List Index

A term maps to an ordered list of documents that contain this term

o\ 8 Return all documents with common guery terms

d0C42 l l
* INSERT: Ducks symbolize
| travel. Many 2
- For each term in document D: species of ducks 4 4 15
. . migrate up to
Append D.id to list Ligrm 800 miles. 42

document ID'(_/

e QUERY:

- Query terms: @m

- Result: Ly ,cks N Ltrayel = 12,135,422}

15
19

4

Lducks

APPLICATIONS

e [nformation retrieval * DB query processing
e Graph analytics e Similarity search

http://D.id

Why to Distribute Index Structures?

Two major reasons:

- Very large datasets

- Spilling data to secondary (slow) storage is undesirable
(e.g., index structure in an in-memory DBMS)

Why to Distribute Index Structures?

Two major reasons:

MEMORY

- Very large datasets

- Spilling data to secondary (slow) storage is undesirable
(e.g., index structure in an in-memory DBMS)

PERFORMANCE

- Scale out to massive amount of queries

Why to Distribute Index Structures?

Two major reasons:

MEMORY

- Very large datasets

- Spilling data to secondary (slow) storage is undesirable

(e.g., index structure in an in-memory DBMS)

PERFORMANCE

- Scale out to massive amount of queries

Architecture:

© Classic monolithic server architectures underutilize C

CPU and RAM tightly coupled

PUJ and memory

ed Memory (DM)

{

isaggrega

D

fast network (RDMA)

e I EHIN H =H = = =B = = = = =

Sapou a1ndwoo

=>
=
O
®
£
©
)
),
D)
),

(

efficient resource utilization

e High flexibility (elasticity)

e Cost

llllllllllllllll

IIIIIIIIIIIIIIII

sapou Alowasw

--'

Disaggregated Memory (DM)

e High flexibility (elasticity)

o Cost-efficient resource utilization (sustainability)

DESIGN CHALLENGES

compute nodes

e Data must be accessed over the network

* MNs have near-zero computation power

memory nodes

Disaggregated Memory (DM)

e High flexibility (elasticity) ?
9
o Cost-efficient resource utilization (sustainability) %
=
Q.
=
e
* Data must be accessed over the network
* MNs have near-zero computation power
&
O
FOVA_ :
-
e Fully bypasses the remote CPU e
)
S

e Low latency (single digit i)

TRADITIONAL DISTRIBUTION SCHEMES

Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

t1 to t3 ta ts te 17
)) | b

G

MN; MN, MN., MN,

Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

* Query (on worker): t1
- Read lists from remote memory to local buffer !

- Perform list operation

MN;

to 13

)

}

MN,

ta 15 te 17
U |
G
E
D F
MN, MN,

local buffer (on CN; per worker):

Query: {ty, t2, t5}

A

B E

Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

* Query (on worker): t1
- Read lists from remote memory to local buffer !

- Perform list operation

Network latency (waiting for long list)
MN,

to 13

)

}

MN,

ta 15 te 17
U |
G
E
D F
MN, MN,

local buffer (on CN; per worker):

Query: {ty, t2, t5}

A

B E

Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

* Query (on worker): {1 o 13 ta 1s te t7
- Read lists from remote memory to local buftter ! R Vo Vo

- Perform list operation

SCALABILITY CHALLENGES

Network latency (waiting for long list)
Limited memory on CNs

GOAL: fast list operation
(e.g., k-way intersection)

Query: {ty,tr,t5} A B E

Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

* Query (on worker): (higher is better)
- Read lists from remote memory to local buffer — e R e et i i eyl o A i
9 theoretical bandwidth bound
- Perform list operation -2, 925.000
-
9 350.000 |
O)
D)
O 175.000 o),o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
Network latency (waiting for long list) 5 20 40 60 80 100 120 140 160
Limited memory on CNs compute threads [#]

8KB lists (skewed accesses) / 5 CNs, 4 MNs

Access skew

Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN
N ——— VY

MN,
MN.,

MN,

t1

to

A1

B1

C1

D1

E1

F1

G1

A2

B2

C2

D2

E2

F2

G2

A3

B3

C3

D3

E3

F3

A4

B4

C4

D4

E4

F4

G4

Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN

* Query (on worker):
For each MN:

Read pa

Perform

rtial lists to local buffer

ISt operation

MN;

MN,

MN,

MN,

t1 o t3 t4 t5 tg t7
G
E1
A1l B1 2 D1 F1
B2 C2
E2 G2
AD D2 F2
B3 s | LE3 || F3 | G3 |
A3 C3
B4 D4 E4 Fa G4
A4 C4

local buffer (on CN; per worker):

Query: {t, 12,15}

J|

-

-

m‘

Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN

* Query (on worker):

For each MN:
- Read partial lists to local buffer

- Perform list operation

Network latency
Limited memory on CNs

—

MN;

MN,

MN,

MN,

t1 o t3 t4 t5 tg t7
G
E1
A1l B1 2 D1 F1
B2 C2
E2 G2
AD D2 F2
B3 s | LE3 || F3 | G3 |
A3 C3
B4 D4 E4 Fa G4
A4 C4

local buffer (on CN; per worker):

Query: {ty, t2, 15}

J|

—

v—

m‘

Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN

* Query (on worker): (higher is better)
For each MN: _ 1200080
- Read partial lists to local buffer S 9.000.000 |
_Pp ' ' =
erform list operation % 6.000.000 |
S 3.000.000 | -
O A g A : : : : | | | | | | | | | |
Network latency 5 20 40 60 80 100 120 140 160
Limited memory on CNs compute threads [#]

512B lists (uniform accesses) / 5 CNs, 4 MNs

—

Network roundtrips

BLOCK-BASED SCHEME FOR
INVERTED LISTS IN DM

Block-based Partitioning

e Divide lists Into fix-sized blocks

Block-based Partitioning

e Divide lists Into fix-sized blocks

 Distribute blocks among all MNs t
(e.g., round-robin, hash-based, ...) |

B1
B2

B3

Block-based Partitioning

e Divide lists Into fix-sized blocks

 Distribute blocks among all MNs t
(e.g., round-robin, hash-based, ...) |

B1
B2

e Connect blocks via remote pointers

B3

Block-based Partitioning

address to list-head block

can be cached on CNs

e Divide lists Into fix-sized blocks

» Distribute blocks among all MNs to -l e e e
(e.g., round-robin, hash-based, ...) | MN; H H MN,
ce || Da || E3 || Fa D
51 L e i i i e

e Connect blocks via remote pointers

B2
B3

Block-based Partitioning

e Divide lists Into fix-sized blocks

 Distribute blocks among all MNs
(e.g., round-robin, hash-based, ...)

e Connect blocks via remote pointers

e Query (on worker):
© Read list-head blocks to local buffer

PREFETCH ZONE

C1 D1

local buffer
>
-t

B1
B2

B3

M2:1

address to list-head block

can be cached on CNs

E
(o))

E
(&)
S N

MN,

Block-based Partitioning

address to list-head block
can be cached on CNs

e Divide lists Into fix-sized blocks

» Distribute blocks among all MNs to o
(e.g., round-robin, hash-based, ...) | MN; u LIA
C6 D4

e Connect blocks via remote pointers

B2
B3

e Query (on worker): B
© Read list-head blocks to local buffer M LI?E?J
o

® Prefetch subsequent blocks (issue RDMA_READ)

PREFETCH ZONE

w| o] ot 5] [e2| |2
M3:0 M2:3 M4:4

local buffer

Block-based Partitioning

address to list-head block

can be cached on CNs

e Divide lists Into fix-sized blocks

» Distribute blocks among all MNs to -l e o s s D
(e.g., round-robin, hash-based, ...) | MN; H H MN,
ce || Da || E3 || Fa D
51 L e i i i e

e Connect blocks via remote pointers

B2
B3

e Query (on worker): B
© Read list-head blocks to local buffer
@ Prefetch subsequent blocks (issue RDMA_READ)
©® Perform the list operation — on block switch, go to @

PREFETCH ZONE

w| o] ot 5] [e2| |2
M3:0 M2:3 M4:4

local buffer

Addressing Scalability Challenges

NETWORK LATENCY
Network accesses and list operations are

Addressing Scalability Challenges

NETWORK LATENCY
Network accesses and list operations are

LIMITED MEMORY ON CN
Local buffer size is (list sizes)

10

Addressing Scalability Challenges

NETWORK LATENCY
Network accesses and list operations are

LiMmITED MEMORY ON CN
Local buffer size is (list sizes)

ACCESS SKEW

Skewed workloads do not overload individual MNSs
(due to the fine granularity of blocks)

10

Addressing Scalability Challenges

NETWORK LATENCY
Network accesses and list operations are

LiMmITED MEMORY ON CN
Local buffer size is (list sizes)

ACCESS SKEW

Skewed workloads do not overload individual MNSs
(due to the fine granularity of blocks)

NETWORK ROUNDTRIPS

Number of roundtrips is minimal for very small lists
(otherwise, latency is masked with list operation)

10

Scalability Experiments

=== \/ERTICAL

== HORIZONTAL

BLOCKBASED

(nhigher is better) only 10MB

\\ ‘
B

f;’.‘;"‘/_}‘ masking

out of memory

5 30 60 90 120 150
compute threads [#]

p—
Ul
-

throughput [q/s]
=

(a) CCNEWS
(information retrieval)

average query size: 6

SETUP:
e 5 CNs (32 threads / 10GB RAM)
4 MNs (1 thread / 96GB RAM)
e Block size: 1KB

11

Scalability Experiments

. , SP : === VERTICAL == HORIZONTAL BLOCKBASED
(higher is better) -only 10MB
) \x
2 150 25,000
; el
a, 100 A maskmg 15,000 e e o o o o ¢
g \/ O S S
5 >0 it (F rermany = 5,000 prenoees | -
= (G O MO ’ 'skewed accesses:
5 30 60 90 120 150 5 30 60 90 120 150
compute threads [#] compute threads [#]
(a) CCNEWS (b) TWITTER
(information retrieval) (graph analytics)

average query size: 6

SETUP:
e 5 CNs (32 threads / 10GB RAM)
4 MNs (1 thread / 96GB RAM)
e Block size: 1KB

11

Scalability Experiments

prTTTIo eI ; === VERTICAL == HORIZONTAL =0-= BLOCKBASED =
(higher is better) -only T0MB: rut i lrn =wreg e =k
2 \\ 25,000 .-.'
S 150 ’ - ok . B mee - T
— "
45 N--------'----: H B |
o, 100 5 _rng_sflf_lp_g_; 15,000
) x /"
§ 50 :' """"""""" : 5.000 ammmnl \ ------------ - = il
< .out of memotry: ’ ‘skewed accesses
5 30 60 90 120 150 5 30 60 90 120 150 g o s
compute threads [#] compute threads [#] aiy Buicd " Mol el wiy e " "ulle el P
(a) CCNEWS (b) TWITTER C g o Wl s -
(information retrieval) (graph analytics) L. E d Pl b s

average query size: 6

MORE RESULTS IN THE PAPER

SETUP:
e 5 CNs (32 threads / 10GB RAM)
4 MNs (1 thread / 96GB RAM)
e Block size: 1KB

INCREMENTAL INDEX UPDATES

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

updater 1

Insert

updater 2

delete

rear lock
(RDMA_CAS)

13

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

OPTIMISTIC CONCURRENCY CONTROL

reader

read list

S

versions

reader’s buffer

13

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

OPTIMISTIC CONCURRENCY CONTROL

S

versions

reader’s buffer

Insert

13

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

OPTIMISTIC CONCURRENCY CONTROL

reader

read list

S

versions

reader’s buffer

versions do not match

13

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

|
* Block re-allocations

- Pointer/block tagging

reader

read list

13

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

|
* Block re-allocations

- Pointer/block tagging

reader

read list

13

Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

|
* Block re-allocations

- Pointer/block tagging

updater 1

delete block
\

13

Index Updates

insert block
5 . . list 42
rotocol for incremental concurrent index updates
MAIN CHALLENGES
e Write-write conflicts —reeeloeeoo. mommmsmmeses .
- Rear write locks B

e Read-write conflicts

[]

- Verification through versioning (lock-free)

|
* Block re-allocations .
- Pointer/block tagging \

buffer pointer tag

p,

block tag

13

Index Upaates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

|
* Block re-allocations

- Pointer/block tagging

reader

continues reading list

buffer

[]

list 42

o

p,

block tag

N

pointer tag

13

Conclusion

* |dentified key performance bottlenecks of traditional partitioning schemes

not efficient under memory disaggregation

* Proposed a scalable inverted list index design for disaggregated memory

* Developed a protocol to support fast concurrent index updates:

- Lock-free read queries

- Fine-grained write locks for updates

o Scalability evaluation on real-world datasets

14

SCALABLE DISTRIBUTED INVERTED LIST INDEXES
IN DISAGGREGATED MEMORY

MANUEL WIDMOSER
DANIEL KOCHER
NIKOLAUS AUGSTEN

github.com/DatabaseGroup/rdma—inverted—-index

@ manuel.widmoser@plus.ac.at

