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Inverted List Index

A term maps to an ordered list of documents that contain this term

o\ 8 Return all documents with common guery terms
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Why to Distribute Index Structures?

Two major reasons:

- Very large datasets

- Spilling data to secondary (slow) storage is undesirable
(e.g., index structure in an in-memory DBMS)
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Why to Distribute Index Structures?

Two major reasons:

MEMORY

- Very large datasets

- Spilling data to secondary (slow) storage is undesirable

(e.g., index structure in an in-memory DBMS)

PERFORMANCE

- Scale out to massive amount of queries

Architecture:

© Classic monolithic server architectures underutilize C

CPU and RAM tightly coupled

PUJ and memory
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Disaggregated Memory (DM)

e High flexibility (elasticity)

o Cost-efficient resource utilization (sustainability)

DESIGN CHALLENGES

compute nodes

e Data must be accessed over the network

* MNs have near-zero computation power

memory nodes




Disaggregated Memory (DM)
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TRADITIONAL DISTRIBUTION SCHEMES



Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing
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Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

* Query (on worker): {1 o 13 ta 1s te t7
- Read lists from remote memory to local buftter ! R Vo Vo

- Perform list operation

SCALABILITY CHALLENGES

Network latency (waiting for long list)
Limited memory on CNs

GOAL: fast list operation
(e.g., k-way intersection)

Query: {ty,tr,t5} A B E

-----------------------------------------




Method 1: VERTICAL Partitioning

e Distribute complete lists across MNs using load balancing

* Query (on worker): (higher is better)
- Read lists from remote memory to local buffer — e R e et i i eyl o A i
9 theoretical bandwidth bound
- Perform list operation -2, 925.000
-
9 350.000 |
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O 175.000 o),o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
Network latency (waiting for long list) 5 20 40 60 80 100 120 140 160
Limited memory on CNs compute threads [#]

8KB lists (skewed accesses) / 5 CNs, 4 MNs

Access skew



Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN
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Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN

* Query (on worker):
For each MN:
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Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN

* Query (on worker):

For each MN:
- Read partial lists to local buffer

- Perform list operation

Network latency
Limited memory on CNs
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Method 2: HORIZONTAL Partitioning

* Assign a range of documents to a dedicated MN

* Query (on worker): (higher is better)
For each MN: _ 1200080
- Read partial lists to local buffer S 9.000.000 |
_Pp ' ' =
erform list operation % 6.000.000 |
S  3.000.000 | -
O A g A : : : : | | | | | | | | | |
Network latency 5 20 40 60 80 100 120 140 160
Limited memory on CNs compute threads [#]

512B lists (uniform accesses) / 5 CNs, 4 MNs

—

Network roundtrips



BLOCK-BASED SCHEME FOR
INVERTED LISTS IN DM
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e Divide lists Into fix-sized blocks
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Block-based Partitioning

e Divide lists Into fix-sized blocks

 Distribute blocks among all MNs
(e.g., round-robin, hash-based, ...)

e Connect blocks via remote pointers

e Query (on worker):
© Read list-head blocks to local buffer
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Block-based Partitioning

address to list-head block
can be cached on CNs

e Divide lists Into fix-sized blocks

» Distribute blocks among all MNs to o
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e Connect blocks via remote pointers
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Block-based Partitioning

address to list-head block

can be cached on CNs

e Divide lists Into fix-sized blocks

» Distribute blocks among all MNs to -l e o s s D
(e.g., round-robin, hash-based, ...) | MN; H H MN,
ce || Da || E3 || Fa D
51 L e i i i e

e Connect blocks via remote pointers

B2
B3

e Query (on worker): B
© Read list-head blocks to local buffer
@ Prefetch subsequent blocks (issue RDMA_READ)
©® Perform the list operation — on block switch, go to @

PREFETCH ZONE
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M3:0 M2:3 M4:4

local buffer
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Addressing Scalability Challenges

NETWORK LATENCY
Network accesses and list operations are

LiMmITED MEMORY ON CN
Local buffer size is (list sizes)

ACCESS SKEW

Skewed workloads do not overload individual MNSs
(due to the fine granularity of blocks)

NETWORK ROUNDTRIPS

Number of roundtrips is minimal for very small lists
(otherwise, latency is masked with list operation)
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Scalability Experiments
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Scalability Experiments
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INCREMENTAL INDEX UPDATES



Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

updater 1

Insert

updater 2

delete

rear lock
(RDMA_CAS)

13



Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

OPTIMISTIC CONCURRENCY CONTROL

reader

read list

S

versions

reader’s buffer

13



Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

OPTIMISTIC CONCURRENCY CONTROL

S

versions

reader’s buffer

Insert

13



Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

OPTIMISTIC CONCURRENCY CONTROL

reader

read list

S

versions

reader’s buffer
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Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)
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Index Updates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

|
* Block re-allocations

- Pointer/block tagging

updater 1

delete block
\
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Index Updates

insert block
5 . . list 42
rotocol for incremental concurrent index updates
MAIN CHALLENGES
e Write-write conflicts —reeeloeeoo. mommmsmmeses .
- Rear write locks B

e Read-write conflicts

[]

- Verification through versioning (lock-free)

|
* Block re-allocations .
- Pointer/block tagging \

buffer pointer tag

p,

block tag
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Index Upaates

Protocol for iIncremental concurrent index updates

MAIN CHALLENGES

e \Write-write conflicts
- Rear write locks

 Read-write conflicts
- Verification through versioning (lock-free)

|
* Block re-allocations

- Pointer/block tagging

reader

continues reading list

buffer

[]

list 42

o

p,

block tag

N

pointer tag
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Conclusion

* |dentified key performance bottlenecks of traditional partitioning schemes

not efficient under memory disaggregation

* Proposed a scalable inverted list index design for disaggregated memory

* Developed a protocol to support fast concurrent index updates:

- Lock-free read queries

- Fine-grained write locks for updates

o Scalability evaluation on real-world datasets
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